Salmonid MyD88 is a key adapter protein that activates innate effector mechanisms through the TLR5M/TLR5S signaling pathway and protects against Piscirickettsia salmonis infection

Volver al listado

DOI: 10.1016/j.fsi.2021.12.030

Año: 2022

Autores: Carolina Muñoz-Flores, Allisson Astuya-Villalón, Alex Romero, Jannel Acosta, Jorge R. Toledo

Palabras clave: Toll-like receptor 5 MyD88, Salmonids, Reactive oxygen species, Piscirickettsia salmonis, Flagellin

Descargar

Fish and Shellfish Immunology

INVESTIGADORES

Allisson Astuya Villalón
Investigadora Asociada Línea 5

The membrane-anchored and soluble Toll-like Receptor 5 -TLR5M and TLR5S, respectively-from teleost recognize bacterial flagellin and induce the pro-inflammatory cytokines expression in a MyD88-dependent manner such as the TLR5 mammalian orthologous receptor. However, it has not been demonstrated whether the induced signaling pathway by these receptors activate innate effector mechanisms MyD88-dependent in salmonids. Therefore, in this work we study the MyD88 dependence on the induction of TLR5M/TLR5S signaling pathway mediated by flagellin as ligand on the activation of some innate effector mechanisms. The  intracellular and extracellular Reactive Oxygen Species (ROS) production and conditioned supernatants production were evaluated in RTS11 cells, while the challenge with Piscirickettsia salmonis was evaluated in SHK-1 cells. Our results demonstrate that flagellin directly stimulates ROS production and indirectly stimulates it through the production of conditioned supernatants, both in a MyD88-dependent manner. Additionally, flagellin stimulation prevents the cytotoxicity induced by infection with P. salmonis in a MyD88-dependent manner. In conclusion we demonstrate that MyD88 is an essential adapter protein in the activation of the TLR5M/TLR5S signaling pathway mediated by flagellin in salmonids, which leads downstream to the induction of innate effector mechanisms, promoting immuno-protection against a bacterial challenge with P. salmonis.